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Clinical trials can have a major impact on public health 

Required information for designing a clinical trial is not fully 

available 

Ongoing monitoring of accumulating data is necessary 

Interim analyses are common 

Usually costly 

Requires unblinding treatment assignments 

Statistical implications 

We will investigate the use of the accumulated data for purposes 

of modifying aspects of the study design IN BLINDED 

SETTING 
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Background, Motivating Question, MDD Trial[1]  

4 Introduction 

Additional AD Treatment 

1. Mahmoud A.R., Pandina J.G., Turkoz I., Kosik-Gonzalez C., Canuso M.C, Kujawa J.M., and Gharabawi G.M. Risperidone for treatment-refractory major depressive disorder. 

Annals of Internal Medicine, 2007; 147: 593-602. 
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Background, Motivating Question, MDD Trial[1]  
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Additional AD Treatment 

RANDOMIZATION for 

those who did not respond 

6 weeks long, but the primary time 

point was Week 4 

Placebo + AD Treatment as usual Placebo + AD Treatment as usual 

Active + AD Treatment as usual 

1. Mahmoud A.R., Pandina J.G., Turkoz I., Kosik-Gonzalez C., Canuso M.C, Kujawa J.M., and Gharabawi G.M. Risperidone for treatment-refractory major depressive disorder. 

Annals of Internal Medicine, 2007; 147: 593-602. 
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Background, Motivating Question, MDD Trial[1]  

Nov, 2013 6 Introduction 

Additional AD Treatment 

RANDOMIZATION for 

Patients with Caroll 

Depression Score >20 

And CGI-S4 

6 weeks long, but the primary time 

point was Week 4 

Outcome Parameters 

Clinician Rated Patient Reported 

•HRSD-17 (primary efficacy 

scale) 

•CGI-S 

 

•Most Troubling Symptoms 

(MTS) or PaRTS-D 

•Patient Global Impression of 

Severity PGIS 

 

Placebo + AD Treatment as usual Placebo + AD Treatment as usual 

Active + AD Treatment as usual 

1. Mahmoud A.R., Pandina J.G., Turkoz I., Kosik-Gonzalez C., Canuso M.C, Kujawa J.M., and Gharabawi G.M. Risperidone for treatment-refractory major depressive disorder. 

Annals of Internal Medicine, 2007; 147: 593-602. 
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Background, Motivating Question, MDD Trial  

Nov, 2013 7 Introduction 

Primary Time Point? 

   Week 4 or Week 6? 

 

Primary Endpoint? 

   HRSD-17 or PaRTS-D 
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Background, Motivating Question, Schizoaffective Trial  

Nov, 2013 8 Introduction 

Psychosis 

Mania Depression 
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Background, Motivating Question, Schizoaffective Trial  

Nov, 2013 9 Introduction 

Psychosis 

Mania Depression 

PANSS 

30-210 

YMRS 

0-60 

HAM-D-21 

0-52 
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Background, Motivating Question, Schizoaffective Trial[1]  

Nov, 2013 10 Introduction 

BL Wk 6 

n=95   PBO 

n=216   PALI PR 3 - 12 mg/d (start at 6 mg; flexible) 

Study 3002 

N=311 

Psychosis 

Mania Depression 

1. Canuso CM, Lindenmayer JP, Kosik-Gonzalez C, Turkoz I, Carothers J, Bossie CA, Schooler NR. A randomized, double-blind, placebo-controlled study of 2 dose ranges of 

paliperidone extended-release in the treatment of subjects with schizoaffective disorder. J Clin Psychiatry. 2010 May;71(5):587-98. 
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Background, Motivating Question, Schizoaffective Trial  
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Psychosis 

Mania 

Depression 

Changes in PANSS 

Total Score at Week 6  

YMRS 

HAM-D-21 

PRIMARY ENDPOINT SECONDARY ENDPOINTS 
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Background, Motivating Question, Schizoaffective Trial  

Nov, 2013 12 Introduction 

Psychosis 

Mania 

Depression 

YMRS 

HAM-D-21 

PRIMARY ENDPOINT SECONDARY ENDPOINTS 

FOR REGISTRATION PURPOSES 

Changes in PANSS 

Total Score at Week 6  
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Background, Motivating Question, ADHD Trial 1 

Nov, 2013 14 Introduction 

1. Wigal SB, Wigal T, Schuck S, Brams M, Williamson D, Armstrong RB, and Starr HL. Academic, Behavioral, and Cognitive Effects of OROS® Methylphenidate on Older Children 

with Attention-Deficit/Hyperactivity Disorder . J Child Adolesc Psychopharmacol. 2011 April; 21(2): 121–131.  

 

 
 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wigal SB[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wigal T[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schuck S[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brams M[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williamson D[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Armstrong RB[auth]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
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1. Wigal SB, Wigal T, Schuck S, Brams M, Williamson D, Armstrong RB, and Starr HL. Academic, Behavioral, and Cognitive Effects of OROS® Methylphenidate on Older Children 

with Attention-Deficit/Hyperactivity Disorder . J Child Adolesc Psychopharmacol. 2011 April; 21(2): 121–131.  
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http://www.ncbi.nlm.nih.gov/pubmed/?term=Brams M[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williamson D[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Armstrong RB[auth]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080768/


BASS XX 

Background  

Nov, 2013 16 Introduction 

It is important to evaluate secondary endpoints to differentiate your 

drug from other drugs in market place. 
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It is important to evaluate secondary endpoints to differentiate your 

drug from other drugs in market place. 

 

Another symptom, 

Functionality, 

Medication Satisfaction, 

Certain Adverse Reactions, 

Cognition, 

Etc. 
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Background  

Nov, 2013 18 Introduction 

It is important to evaluate secondary endpoints to differentiate your 

drug from other drugs in market place 

 

Another symptom, 

Functionality, 

Medication Satisfaction, 

Certain Adverse Reactions, 

Cognition, 

Etc. 

 

Failure to consider important outcomes can limit the 

conclusions of clinical trials. 
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Background 
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• Examination of appropriate statistical methods to test secondary 

endpoints requires careful consideration 

• Fixed sequence gate-keeping procedures [1,2,3,4] are widely used 

because of their ease of application and interpretation in many 

circumstances 

• These gate-keeping procedures often require prospective ordering 

of null hypotheses for secondary endpoints 

• ***Can we use information that is available to order the null 

hypotheses based on interim effect sizes without breaking the 

blind?   

 

 

1. Demitrienko A., Tamhane A., Bretz F. Multiple testing problems in pharmaceutical statistics 2010; Chapman&Hall/CRC Biostatistics Series 

2. Westfall P.H., Krishen, A., Optimally weighted, fixed sequence and gatekeeper multiple testing procedure. J of Statistical Planining and Inference. 99 (2001) 25-40 

3. Weins, B., Dmitrienko, A. (2005). The fallback procedure for evaluating a single family of hypotheses. Journal of Biopharmaceutical Statistics 15, 929–942.  

4. Bretz F., Maurer W., Brannath W., Posch M., A graphical approach to sequentially rejective multiple test procedures, Stat in Med, 2009; 28:586–604.  
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Literature Review 

Nov, 2013 20 Introduction 

• EM algorithm to estimate the within group variance for sample size re-

estimation without unblinding at interim stages has been suggested [1,2,3] 

• Enrollment order of subjects and the randomization block sizes to estimate the 

within group variance have also been used [4] 

• Risk of unblinding the treatment effect from blinded inferences based on 

knowledge of the randomization block size for continuous and binary 

outcomes [5] 

• The recent draft FDA guidance on adaptive designs [6]  discusses possible 

study design modifications such as selection and/or order of secondary 

endpoints in addition to sample size re-estimation 

• Blinded treatment effects for survival endpoints[7] were also examined 

 

 
1.Gould AL, Shih WJ. Sample size re-estimation without unblinding for normally distributed outcomes with unknown variance. Communications in Statistics Theory and Methods 

1992; 21: 2833–2853. 

2. Shih WJ. Sample size reestimation in clinical trials. In Biopharmaceutical sequential statistical applications, Peace K (ed.). Marcel Dekker: New York, 1992; 285–301. 

3. Shih WJ. Sample size reestimation for triple blind clinical trials. Drug Information Journal 1993; 27: 761–764. 

4. Xing B, Ganju J. A method to estimate the variance of an endpoint from an on-going blinded trial. Statistics in Medicine 2005; 24: 1807-1814. 

5. Miller F., Friede T, Kieser T. Blinded assessment of treatment effects utilizing information about randomization block length. Statistics in Medicine 2009; 28: 1690-1706. 

6. Guidance for industry: Adaptive design clinical trials for drugs and biologics. 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm201790.pdf 

7. Xie J, Quan H, Zhang J. Blinded assessment of treatment effects for survival endpoint in an ongoing trial. Pharmaceutical Statistics 2012. 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm201790.pdf
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Objective 

Nov, 2013 21 Introduction 

• Instead of formal interim analyses on unblinded data, use the 

information from blinded data 

• Assess the feasibility of estimating magnitude of treatment effect 

on various secondary endpoints in ongoing trial 

• Primary objective is to compare posterior ordering of the signal-

to-noise ratios (effect sizes),                , using available data 

points 
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For a two component univariate normal mixture model,  it is appropriate to specify the 

complete likelihood function for a given response in the form :

( , |p y z ;      

2 2
0 0 1 1 0

1 0 =p(z 1)

where,        ( , );  ( , );      is randomization weight.

The signal-to-noise ratio for endpoint ,     / ,  ( 1,..., )

) ( | ) (1 ) ( | )

***Our objective is 

k k kk d k K

p y p y 

      

 

  

   

 

  1 0

θ θ

θ θ θ

1 2

to compare the EM and Bayesian algorithm induced 

posterior ordering of the signal-to-noise ratios of endpoints,  ( ... | )kP d d d y  
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 ;      =p(z 1)

MMLEs are the most common way to estimate parameters of interest; however, MMLEs 

often do not have closed form solutions. EM seeks the MMLE by iterativel

1 0( , | ) ( | ) (1 ) ( | )p y z p y p y     1 0θ θ θ

( )

y applying 

Expectation and Maximizing steps.

ˆE-Step,       {log ( , | ) | , }  

M-Step,      the conditional expectation is maximized with respect to . This yields the new estimates 

               

tE p y z yθ θ

θ

( 1) ( 1)ˆ    for   and a distribution for . t tz θ
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Conditional expectation of latent treatment assignment at iteration  ( 1) is:
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The likelihood function of the mixture distribution and the prior distributions of    and z

are combined to obtain the joint posterior distribution,  which is assumed to contain all the information 

abou

θ

t the unknown parameters. Using the Bayes theorem, the posterior distribution satisfies:

where,

( | , )   is the likelihood

( | )       is the prior probability of latent tre

( , | ) ( | , ) ( | ) ( )

p y z

p z

p z y p y z p z p

θ

θ

θ θ θ θ

atment assignment

( )           is the prior distribution of   p θ θ
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The conditional distribution of the treatment allocation is proportional :

   this reduces to latent treatment allocation probability in EM.

Prior Distribution
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p z y p y z p z p

p z y p y z





θ θ θ θ

θ θ

2
0 0 0

2
1 0 1 1

2

s:

,  in order to reduce sensitvity

For simplicity purposes, we have

~ ( , )

~ ( , ),      

~ ( , ),

( , )

j N

N y s

N y s

Gamma

  



  

  

 



BASS XX 

 

 

Bayesian Approach 

Nov, 2013 Methods 28 

Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0

2

2 2

ployed to generate samples from the posterior distribution. The joint 

posterior probability distribution of these parameters satisfies :
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Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0
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ployed to generate samples from the posterior distribution. The joint 
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Likelihood for treatment 
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Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0

2

2 2

ployed to generate samples from the posterior distribution. The joint 

posterior probability distribution of these parameters satisfies :
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Likelihood for placebo arm 
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Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0

2

2 2

ployed to generate samples from the posterior distribution. The joint 

posterior probability distribution of these parameters satisfies :
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Prior for  treatment arm 



BASS XX 

 

 

Bayesian Approach 

Nov, 2013 Methods 32 

Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0

2

2 2

ployed to generate samples from the posterior distribution. The joint 

posterior probability distribution of these parameters satisfies :
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Prior for Placebo arm 
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Regardless of the structure of the prior distribution,  the posterior distribution does not have

a simple closed form. In order to make inferences about the unknown parameters,  MCMC 

methodologies are em

2 2 2
0 0 0

2

2 2

ployed to generate samples from the posterior distribution. The joint 

posterior probability distribution of these parameters satisfies :
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0 1
2 2 2

0 11
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1 0 1
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The posterior conditional distributions of parameters of interest in equation are given by :
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We assume a trial with stratified randomization. The sample is divided into subsamples on the 

basis of stratifaction factor (covariate: additional medication usage,   and  groups).

Let   denote ti

yes no

g

2
2

0 2

he known strata membership of the subject .   1 if observation belongs to the 

strata and 0 if it does not. The joint posterior distribution then takes the form :
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We assume a trial with stratified randomization. The sample is divided into subsamples on the 

basis of stratifaction factor (covariate: additional medication usage,   and  groups).

Let   denote ti

yes no

g

2
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0 2

he known strata membership of the subject .   1 if observation belongs to the 

strata and 0 if it does not. The joint posterior distribution then takes the form :
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2
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02

Conditional posterior probability treatment assignment at each iteration is given by :  
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1, 1,0
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The posterior distribution for parameters of interest are computed to be :
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0

[1,2,3]
0

0 0

0

Denote the historical data by  and current data by 

[0,1] to control the influence of the historical data on the current study 

1  approaches full barrowing from 

0  approaches no ba

D D

D











 0

0

0

rrowing from 

The basic idea is to use the power  parameter to control the influence of the historical data on the current study

Let assume 

                 ( | ) is the past data likelihood

      

D

L D





0  0 0 0 0

0 0

           ( | ) is the current data likelihood

( | , ) ( | ) ( ) ( ) is the posterior given past likelihood,

Then, the full likelihood is proportional to ( | , ) ( | )

L D

p D L D p p

p D L D





    

  



1. Ibrahim J, Chen MH. Power prior distributions for regression models. Statistical Science 2000; 15:46-60. 

2. Duan Y, Ye K, Smith EP. Evaluating water quality using power priors to incorporate historical information. Environmetrics 2006; 17: 95-106.  

3. Hobbs BP, Carlin BP, Mandrekar S, and Sargent DJ. Hierarchical commensurate and power prior models for adaptive incorporation of historical information in 

clinical trials. Biometrics, 2011; 67:1047-1056. 
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The joint posterior distribution can be extended to include the prior for 
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The posterior distribution of parameters of interest is computed to be:
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By contrast with frequentist analogues,  Bayesian model comparison distinguishes which likelihood and prior 

combinations better fit the data. These measures of performance can be used to choose a singl

[1]

e “best” model

or improve estimation via model averaging.

The deviance information criterion (DIC)  provides a natural measure of performance in this setting.

Models with smaller DIC should be preferre

0 0

0 0

d to models with larger DIC.

,

        =2 ( ),       since   ( )

ˆˆ        =2 ( , ) ( , )

ˆˆ       2   ( , )   ( , )                      

d

d

DIC p D

D D p D D

D D

Expectation over Expectation over

   

   

 

  



 

θ θ

1. D.J. Spiegelhalter, N.G. Best, B.P. Carlin, A. Linde. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistics 

Society, Series B (Statistical Methodology)2002; 64: 583–639. 
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An important feature of the Gibbs sampler is that each simulated posterior parameter value is always accepted

The main drawback of the Gibbs sampler in this setting is the lack of mixing

We employed a Metropolis-Hastings algorithm with an acceptance-rejection sampling

This involved subsampling 10% of the treatment and placebo group observations and proposing a label switch

1)                 Draw random candidate samples fromfor switching treatment

2)                Generate  from the Uniform (0,1) distribution

(1 ( ( 1))
3)                If ,   make label change;  otherwise return to s

( 1)

i i

i i

u

p z
u

p z

 







tep 1.
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Scenario N 

1 0.5 = 0.5 = 0.5 170 

2 0.8 > 0.5 > 0.3 170 

3 1.0 > 0.5 > ~0 170 

4 1.0 > 0.5 > ~0  72 

5 1.0 > 0.5 > ~0 468 

1d 3d2d
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Sample Size and Power Computations using a Two-Sample t-test with Two-Sided Type I Error=0.05  
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1 2 3

2 treatment arms with a 1:1 treatment allocation ratio,

3  uncorrelated endpoints,  ,  ,  and ,

No missing data,

For each case 20 data sets are generated,  ( 1,..., 20),

Different prior for each of

k y y y

l l





 the endpoints.

2
0 0 0

2
1 0 1 1

2

2 2
0 0 1

Generate Input Data Sets:

( , ) ~ ( , ),

( , ) ( , ) ( , ) ~ ( , ),

~ ( , ),  1,2,3,   1,..., 20.

Without loss of generality,  we assumed that

10,   10

k k

k k

k k

k k k

k l N Y s

k l k l k l N Y s

IG b k l

Y s s



  

 

 

 

  

Scenario N 

1 0.5 = 0.5 = 0.5 170 

2 0.8 > 0.5 > 0.3 170 

3 1.0 > 0.5 > 0 170 

4 1.0 > 0.5 > 0  72 

5 1.0 > 0.5 > 0 468 

2d 3d1d
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2 2
0 1 Each true input clinical trial data set is based on ~ (10,10 )  and  with normal distribution with variance 10  

and corresponding mean value to generate effect sizes for a given scenario.

 Initi

N 

2
0

0

al values of  ( ,  ,  ) for simulations are based on the true input data set parameters and the initial 

power parameter  estimate is given as 0.25 and 0.5.

 Posterior inferences are based on 1000 i

  



th

terations.

 The first 200 iterations are considered to be the burn in period for both EM and Bayesian algorithms. 

 Every 4 point after the burn in period is stored for the Bayesian simulations to re



 duce correlations 

to emulate thinning process.

 Eight hundred simulation results in EM and 200 results in Bayesian methods are summarized.

 Posterior parameter estimates are summuarized.

 Empirical pr



 obability of each triplet combination of effect size ordering is examined.

 In each case for a given data set,  the last 20 simulation results are kept for effect size orderings.

 For each of the study data sets,  a total of 20 20 20 8000 possible triplet combinations of orderings are available.

 For 20 different study data sets,  a total of 160,000 possible orderings are available.
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Posterior Probability of  Effect Size Ordering by Scenario 
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Posterior Distribution of Effect Sizes by Scenario, Averaged Over 20 Data Sets 
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Posterior Distribution of Effect Sizes by Scenario 
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Simulation Results, Scenario 1 
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Simulation Results, Scenario 1 
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Simulation Results, Scenario 1 
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Simulation Results, Scenario 1 
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Simulation Results, Scenario 1 
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Simulation Results, Scenario 2  
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Simulation Results, Scenario 2  
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Simulation Results, Scenario 3  
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Simulation Results, Scenario 3  
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Simulation Results, Scenario 4  
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Simulation Results, Scenario 4  
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Simulation Results, Scenario 5  
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Simulation Results, Scenario 5  
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Primary Time Point? 

   Week 4 or Week 6? 

 

Primary Endpoint? 

   HRSD-17 or PaRTS-D 
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* *
4 6

 Decision Rule 1:

Calculate the posterior probability that the HRSD 17 effect size at Week 4 is larger than that of Week 6

( ( ) ( ) | )

 Decision Rule 2:

Calculate 95% Credible Intervals for W
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Summary of Effect Sizes for HRSD-17 and PaRTS-D 

At Week 4, EM Results were Not Available 

Posterior Ordering of Effect Sizes 

for HRSD-17 

Week 4 Week 6 

EM   0.0% 100.0% 

Bayesian 47.7%   52.3% 
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DIC Scores on HRSD-17 and PaRTS-D 
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 We investigated whether or not the researchers can obtain reliable estimates of effect sizes 

without knowing treatment assignments.

 Instead of relying on the clinician’s subjective evaluations,  the



  suggested methodologies 

provide numerical assistance.

 We showed how to order secondary null hypotheses while the study is ongoing,  

 without unblinding the treatments,  

 without losing the validity 



of the testing procedure,  

 and with maintaining the integrity of the trial.

  In our simulations,  we used prior distributions whose hyper parameters reflect the true values 

of the model parameters. I



n MDD analyses,  we used prior distributions whose hyper parameters 

reflect the original study design elements.
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 The EM algorithm frequently failed to generate posterior parameter estimates.

 Both the Bayesian and the EM algorithms overestimated treatment differences and 

standardized effect sizes.

The Bayesian





  algorithms performed better than existing EM algorithm counterparts in ordering 

the standardized effect sizes.

 With the Bayesian algorithm,  the posterior probability for identifying the ground-truth  ordering 

increased both as a function of the effect size differences and as a function of the sample size.

 For large sample sizes,  the proportion of times the true ordering was selected was high (ab ove 35%)

and the variability of standardized effect sizes was low.

 With the EM algorithm,  the probability for identifying the ground-truth ordering was low 

(sometimes near zero) and the variability of



 standardized effect sizes was high.
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THANK YOU!

QUESTIONS?


